Stock Trading by Modelling Price Trend with Dynamic Bayesian Networks
نویسندگان
چکیده
We study a stock trading method based on dynamic bayesian networks to model the dynamics of the trend of stock prices. We design a three level hierarchical hidden Markov model (HHMM). There are five states describing the trend in first level. Second and third levels are abstract and concrete hidden Markov models to produce the observed patterns. To train the HHMM, we adapt a semi-supervised learning so that the trend states of first layer is manually labelled. The inferred probability distribution of first level are used as an indicator for the trading signal, which is more natural and reasonable than technical indicators. Experimental results on representative 20 companies of Korean stock market show that the proposed HHMM outperforms a technical indicator in trading performances.
منابع مشابه
Predicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm
Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملAlgorithmic Trading with Developmental and Linear Genetic Programming
A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading system are applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAM DGP generating notably greater profit in some stock ...
متن کاملSentiment Shock and Stock Price Bubbles in a Dynamic Stochastic General Equilibrium Model Framework: The Case of Iran
In this study, a model of Bayesian Dynamic Stochastic General Equilibrium (DSGE) from Real Business Cycles (RBC) approach with the aim of identifying the factors shaping price bubbles of Tehran Stock Exchange (TSE) was specified. The above-mentioned model was conducted in two scenarios. In the first scenario, the baseline model with sentiment shock was examined. In this model, stock price bubbl...
متن کاملA Collaborative Trading Model by Support Vector Regression and Ts Fuzzy Rule for Daily Stock Turning Points Detection
The daily stock turning point detection problems are investigated in this study. The Support Vector Regression model has been applied in various forecasting applications and proved to be with stable performances. In this research, SVR has been used to predict the trading signal since it could handle overall information effectively even under the complex environment of stock price variations. Th...
متن کامل